Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 15(5)2023 05 11.
Article in English | MEDLINE | ID: covidwho-20243425

ABSTRACT

Antibody-dependent enhancement of infection (ADE) is clinically relevant to Dengue virus (DENV) infection and poses a major risk to the application of monoclonal antibody (mAb)-based therapeutics against related flaviviruses such as the Zika virus (ZIKV). Here, we tested a two-tier approach for selecting non-cross-reactive mAbs combined with modulating Fc glycosylation as a strategy to doubly secure the elimination of ADE while preserving Fc effector functions. To this end, we selected a ZIKV-specific mAb (ZV54) and generated three ZV54 variants using Chinese hamster ovary cells and wild-type (WT) and glycoengineered ΔXF Nicotiana benthamiana plants as production hosts (ZV54CHO, ZV54WT, and ZV54ΔXF). The three ZV54 variants shared an identical polypeptide backbone, but each exhibited a distinct Fc N-glycosylation profile. All three ZV54 variants showed similar neutralization potency against ZIKV but no ADE activity for DENV infection, validating the importance of selecting the virus/serotype-specific mAbs for avoiding ADE by related flaviviruses. For ZIKV infection, however, ZV54CHO and ZV54ΔXF showed significant ADE activity while ZV54WT completely forwent ADE, suggesting that Fc glycan modulation may yield mAb glycoforms that abrogate ADE even for homologous viruses. In contrast to the current strategies for Fc mutations that abrogate all effector functions along with ADE, our approach allowed the preservation of effector functions as all ZV54 glycovariants retained antibody-dependent cellular cytotoxicity (ADCC) against the ZIKV-infected cells. Furthermore, the ADE-free ZV54WT demonstrated in vivo efficacy in a ZIKV-infection mouse model. Collectively, our study provides further support for the hypothesis that antibody-viral surface antigen and Fc-mediated host cell interactions are both prerequisites for ADE, and that a dual-approach strategy, as shown herein, contributes to the development of highly safe and efficacious anti-ZIKV mAb therapeutics. Our findings may be impactful to other ADE-prone viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Cricetinae , Zika Virus/genetics , CHO Cells , Dengue Virus/genetics , Cricetulus , SARS-CoV-2 , Antibodies, Viral , Antibodies, Monoclonal/therapeutic use , Cross Reactions , Antibodies, Neutralizing/therapeutic use
2.
Vaccines (Basel) ; 11(2)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2255524

ABSTRACT

Monoclonal antibodies (mAbs) have been used as a rescue strategy for pregnant women affected by COVID-19. To explore its impact on maternal-fetal health, we included all observational studies reporting maternal, fetal, delivery and neonatal outcomes in women who underwent mAbs infusion for COVID-19. Primary outcome was the percentage of preterm delivery. We used meta-analyses of proportions to combine data for maternal, fetal, delivery and neonatal outcome of women treated with mAbs for COVID-19 and reported pooled proportions and their 95% confidence intervals (CIs) for categorical variables or mean difference (MD) with their 95% confidence intervals for continuous variables. Preterm birth was observed in 22.8% of cases (95% CI 12.9-34.3). Fetal distress was reported in 4.2% (95% CI 1.6-8.2). Gestational hypertension and pre-eclampsia were observed in 3.0% (95% CI 0.8-6.8) and 3.4% (95% CI 0.8-7.5) of cases, respectively. Fetal growth restriction was observed in 3.2% of fetuses (95% CI 0.8-7.0). Secondary prophylaxis with mAbs is currently considered the best treatment option for people with mild to moderate COVID-19 disease. More attention should be paid to infants born from mothers who were treated with mAbs, for the risk of immunosuppression.

4.
Plant Biotechnol J ; 2022 Nov 20.
Article in English | MEDLINE | ID: covidwho-2265059

ABSTRACT

This study describes a novel, neutralizing monoclonal antibody (mAb), 11D7, discovered by mouse immunization and hybridoma generation, against the parental Wuhan-Hu-1 RBD of SARS-CoV-2. We further developed this mAb into a chimeric human IgG and recombinantly expressed it in plants to produce a mAb with human-like, highly homogenous N-linked glycans that has potential to impart greater potency and safety as a therapeutic. The epitope of 11D7 was mapped by competitive binding with well characterized mAbs, suggesting that it is a Class 4 RBD-binding mAb that binds to the RBD outside the ACE2 binding site. Of note, 11D7 maintains recognition against the B.1.1.529 (Omicron) RBD, as well neutralizing activity. We also provide evidence that this novel mAb may be useful in providing additional synergy to established antibody cocktails, such as Evusheld™ containing the antibodies tixagevimab and cilgavimab, against the Omicron variant. Taken together, 11D7 is a unique mAb that neutralizes SARS-CoV-2 through a mechanism that is not typical among developed therapeutic mAbs and by being produced in ΔXFT Nicotiana benthamiana plants, highlights the potential of plants to be an economic and safety-friendly alternative platform for generating mAbs to address the evolving SARS-CoV-2 crisis.

5.
Vaccines (Basel) ; 10(5)2022 May 12.
Article in English | MEDLINE | ID: covidwho-1855848

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a public health crisis over the last two years. Monoclonal antibody (mAb)-based therapeutics against the spike (S) protein have been shown to be effective treatments for SARS-CoV-2 infection, especially the original viral strain. However, the current mAbs produced in mammalian cells are expensive and might be unaffordable for many. Furthermore, the emergence of variants of concern demands the development of strategies to prevent mutant escape from mAb treatment. Using a cocktail of mAbs that bind to complementary neutralizing epitopes is one such strategy. In this study, we use Nicotiana benthamiana plants in an effort to expedite the development of efficacious and affordable antibody cocktails against SARS-CoV-2. We show that two mAbs can be highly expressed in plants and are correctly assembled into IgG molecules. Moreover, they retain target epitope recognition and, more importantly, neutralize multiple SARS-CoV-2 variants. We also show that one plant-made mAb has neutralizing synergy with other mAbs that we developed in hybridomas. This is the first report of a plant-made mAb to be assessed as a potential component of a SARS-CoV-2 neutralizing cocktail. This work may offer a strategy for using plants to quickly develop mAb cocktail-based therapeutics against emerging viral diseases with high efficacy and low costs.

6.
Vaccines (Basel) ; 9(11)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1524234

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current COVID-19 pandemic, has caused more than 4.5 million deaths worldwide. Severe and fatal cases of COVID-19 are often associated with increased proinflammatory cytokine levels including interleukin 6 (IL-6) and acute respiratory distress syndrome. In this study, we explored the feasibility of using plants to produce an anti-IL-6 receptor (IL-6R) monoclonal antibody (mAb) and examined its utility in reducing IL-6 signaling in an in vitro model, which simulates IL-6 induction during SARS-CoV-2 infection. The anti-IL6R mAb (IL6RmAb) was quickly expressed and correctly assembled in Nicotiana benthamiana leaves. Plant-produced IL6RmAb (pIL6RmAb) could be enriched to homogeneity by a simple purification scheme. Furthermore, pIL6RmAb was shown to effectively inhibit IL-6 signaling in a cell-based model system. Notably, pIL6RmAb also suppressed IL-6 signaling that was induced by the exposure of human peripheral blood mononuclear cells to the spike protein of SARS-CoV-2. This is the first report of a plant-made anti-IL-6R mAb and its activity against SARS-CoV-2-related cytokine signaling. This study demonstrates the capacity of plants for producing functionally active mAbs that block cytokine signaling and implies their potential efficacy to curb cytokine storm in COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL